Christopher D. Sinclair, Ph.D.

ASSOCIATE PROFESSOR OF MATHEMATICS, UNIVERSITY OF OREGON

EDUCATION
  • Ph.D. Mathematics, University of Texas at Austin, 2005. Supervisor: Jeff Vaaler. Thesis: Multiplicative Distance Functions.
  • B.S. Mathematics, University of Arizona, 1997.
PROFESSIONAL EXPERIENCE
  • Associate Professor · The University of Oregon · September 2013-
  • Assistant Professor · The University of Oregon · August 2009-September 2013
  • Research Member · Mathematical Sciences Research Institute · Fall 2010
  • Instructor, Postdoctoral Fellow · The University of Colorado, Boulder · 2007-2009
  • Visiting Postdoctoral Fellow · Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France · July 2007
  • Visiting Postdoctoral Fellow · Max Planck Institut für Mathematik, Bonn, Germany · April-June 2007
  • Postdoctoral Fellow · Simon Fraser University · 2005-2007
  • Postdoctoral Fellow, Instructor · The University of British Columbia · 2005-2007
  • Assistant Instructor · The University of Texas at Austin · 2002-2005
  • Teaching Assistant · The University of Texas at Austin · 2000-2002
  • Research Scientist · The University of Texas at Austin · Applied Research Laboratories · 1997-1999
HONORS & AWARDS
  • American Institute of Mathematics, SQuaREs (Structured Quartet Research Ensembles) · Igor Pritsker, Chris Sinclair, Jeff Vaaler, Maxim Yattselev · Random polynomials with bounded height. 2014-2017.
  • Simons Collaboration Grant for Mathematicians: #315685 ·  Random matrices and polynomials with logarithmic weights. 2014-2019.
  • Mathematisches Forschungsinstitut Oberwolfach, Research in Pairs · Kathleen Petersen, Chris Sinclair. 2013
  • NSF grant: DMS-0801243 · Analysis program · Integrable Structure of Random Spectra Derived from Diophantine Geometry. 2008-2011.
  • 2001-2002 Frank Gerth III Teaching Excellence Award
  • 2003-2004 University of Texas at Austin Continuing Tuition Fellowship
  • 2003-2004 VIGRE Graduate Fellowship
STUDENTS
  • Nathan Hunter (pre-PhD). Estimated completion 2021
  • Joe Webster (PhD). Estimated completion 2020
  • Jonathan (Nate) Wells (PhD). Estimated completion 2019
  • Vincent Mateus (Departmental Honors). Estimated completion 2019
  • Gavin Armstrong, PhD, Unimodal Levy Processes on Bounded Lipschitz Sets, 2018
  • Ben Estevez, Departmental Honors, Random *-Cosquare Matrices and Self-Inverse Polynomials, 2018
  • Seth Temple, Clark Honors College, The Tweedie Index Parameter and Its Estimator: An Introduction with Applications to Actuarial Ratemaking, 2018
  • Dong Ruh, Departmental Honors, Reflexive Polygons and Loops, 2016
  • Graham Simon, Clark Honors College, Hawkes Processes in Finance: A Review with Simulations, 2016
  • Zach Chalmers, Clark Honors College, Integrating Rigorous Mathematics Into Lower- Division Coursework, 2015
  • Ryo Moore, Clark Honors College, Wronskians of Orthogonal Polynomials, 2014
  • Christopher Shum, PhD, Solvable Particle Models Related to the Beta-Ensemble, 2014
PUBLICATIONS
  • Christopher D. Sinclair and Maxim L. Yattselev, The reciprocal Mahler ensembles of random polynomials, Random Matrices: Theory and Applications, Vol., No.:, 2018.  link, DOI, arXiv
  • Christopher Sinclair and Maxim Yattselev, Root statistics of random polynomials with bounded Mahler measure, Advances in Mathematics, Vol.272, No.:124-199, 2015.  link, DOI, arXiv
  • Brian Rider and Christopher Sinclair, Extremal laws for the real Ginibre ensemble, Annals of Applied Probability, Vol.24, No.4:1621-1651, 2014.  link, DOI, arXiv
  • Brian Rider, Christopher D. Sinclair and Yuan Xu, A solvable mixed charge ensemble on the line, Probability Theory and Related Fields, Vol.55, No.1-2:127-164, 2013.  link, DOI, arXiv
  • Christopher D. Sinclair and Maxim Yattselev, Universality for ensembles of matrices with potential theoretic weights on domains with smooth boundary, Journal of Approximation Theory, Vol.164, No.5:682-708, 2012.  link, DOI, arXiv
  • Christopher D. Sinclair, The partition function of multicomponent log-gases, Journal of Physics A: Mathematical and Theoretical, Vol.45, No.16: 165002, 2012.  link, DOI, arXiv
  • Christopher D. Sinclair, Ensemble averages when β is a square integer, Monatshefte für Mathematik, Vol.166, No.1:121-144, 2012.  link, DOI, arXiv
  • Peter Forrester and Christopher D. Sinclair, A generalized plasma and interpolation between classical random matrix ensembles, Journal of Statistical Physics, Vol.143, No.2:326-345, 2011.  link, DOI, arXiv
  • Kathleen Petersen and Christopher D. Sinclair, Equidistribution of algebraic numbers of norm one in quadratic number fields, International Journal of Number Theory, Vol.7, No.7:1841-1861, 2011.  link, DOI, arXiv
  • Kevin Hare, David McKinnon and Christopher D. Sinclair, Patterns and periodicity in a family of resultants, Journal de Théorie des Nombres de Bordeaux, Vol.21, No.:215-234, 2009.  link, DOI, arXiv
  • Christopher D. Sinclair, Correlation functions for β=1 ensembles of matrices of odd size, Journal of Statistical Physics, Vol.136, No.1:17-33, 2009.  link, DOI, arXiv
  • Alexei Borodin and Christopher D. Sinclair, The Ginibre ensemble of real random matrices and its scaling limits, Communications in Mathematical Physics, Vol.291, No.1:177-224, 2009.  link, DOI, arXiv
  • Christopher D. Sinclair, The range of multiplicative functions on ℂ[x],ℝ[x] and ℤ[x]., Proceedings of the London Mathematical Society, Vol.96, No.3:697-737, 2008.  link, DOI, arXiv
  • Christopher D. Sinclair and Jeffrey Vaaler, Self-inversive polynomials with all zeros on the unit circle, London Mathematical Society Lecture Note Series: Number Theory and Polynomials, Vol.352, No.:312-321, 2008.  link, DOI, arXiv
  • Kathleen Petersen and Christopher D. Sinclair, Conjugate reciprocal polynomials with all roots on the unit circle, Canadian Journal of Mathematics, Vol.60, No.5:1149-1167, 2008.  link, DOI, arXiv
  • Christopher D. Sinclair, Averages over Ginibre's ensemble of random real matrices, International Research Mathematics Notices, Vol.2007, No.:1-15, 2007.  link, DOI, arXiv
  • Christopher D. Sinclair, The distribution of Mahler's measures of reciprocal polynomials, International Journal of Mathematics and Mathematical Sciences, Vol.52, No.:2773-2786, 2004.  link, DOI, arXiv
SELECTED SERVICE
  • United Academics of the University of Oregon, President, 2018-19
  • University of Oregon Senate, Immediate Past President, 2018-19
  • UA/UO Joint Labor Management, 2018-19
  • University of Oregon Senate, CAS-Nat Sci Senator, 2018-19
  • Core Education Council, Chair, 2018-19
  • Academic Council, 2018-19
  • Faculty Salary Equity Task Force, Exec member, 2018-19
  • PAC-12 Academic Leadership Coalition, Webmaster, 2018-19
  • University of Oregon Senate, President, 2017-18
  • Faculty Advisory Council, 2017-18
  • Core Education Task Force, Chair, 2017-18
  • Academic Council, 2017-18
  • United Academics of the University of Oregon, Secretary, 2017-18
  • Oregon Inter-institutional Faculty Senate, 2017-18
  • Computational Neuroscience Faculty Search Committee, 2016-17
  • University of Oregon Senate, Vice President, 2016-17
  • Committee on Committees, Chair, 2016-17
  • Academic Council, 2016-17
  • Faculty Advisory Council, 2016-17
  • United Academics of the University of Oregon, Secretary, 2016-17
  • Oregon Inter-institutional Faculty Senate, 2016-17
  • University Library Committee, Chair, 2015-16
  • Academic Council, 2015-16
  • United Academics of the University of Oregon, Chair of the Communications, Organizing and Membership Committee, 2015-16
Courses Taught
  • Math 252: Calculus II, Spring 2018
  • Math 467/567: Stochastic Processes, Winter 2018
  • Math 307: Intro to Proof, Fall 2017
  • Math 673: Theory of Probability, Spring 2017
  • Math 672: Theory of Probability, Winter 2017
  • Math 467/567: Stochastic Processes, Winter 2017
  • Math 253: Calculus III, Summer 2016
  • Math 467/567: Stochastic Processes, Winter 2016
  • Math 685: Graduate Stochastic Processes, Winter 2016
  • Math 684: Graduate Stochastic Processes, Fall 2015
  • Math 673: Theory of Probability, Spring 2015
  • Math 467/567: Stochastic Processes, Winter 2015
  • Math 672: Theory of Probability, Winter 2015
  • Math 241: Business Calculus I, Fall 2014
  • Math 343: Intro to Statistics, Spring 2014
  • Math 307: Intro to Proof, Winter 2014
  • Math 467/567: Stochastic Processes, Winter 2014
  • Math 241: Business Calculus I, Fall 2013
  • Math 414/514: Intro to Analysis II, Winter 2013
  • Math 607: Fourier Analysis in Number Fields, Winter 2013
  • Math 413/513: Intro to Analysis I, Fall 2012
  • Math 607: Analytic Number Theory, Fall 2012
  • Math 410/510: Stochastic Processes (experimental), Spring 2012
  • Math 673: Theory of Probability, Spring 2012
  • Math 672: Theory of Probability, Winter 2012
  • Math 616: Real Analysis, Fall 2011
  • Math 315: Elementary Analysis, Spring 2011
  • Math 461/561: Intro to Probability, Spring 2011
  • Math 607: Random Matrix Theory, Spring 2011
  • Math 465/565: Mathematical Statistics II, Winter 2011
  • Math 607: Random Matrix Theory, Winter 2011
  • Math 315: Elementary Analysis, Winter 2010
  • Math 465/565: Mathematical Statistics II, Winter 2010
  • Math 281: Several Variable Calculus I, Fall 2009
  • Math 464/564: Mathematical Statistics I, Fall 2009
0